Key aspects in energy and environmental analysis of system studies

Emma Lindkvist

Biogas production

Biogas system

Key aspects

Results

		E		Environment					
Econom		Energy		GWP		AP		EP	
			Wind	Coal	Wind	Coal	Wind	Coal	Wind
System A	Vehicle	СНР	BAU	СНР	Vehicle	СНР	Vehicle	Vehicle	Vehicle
System B	Vehicle	CHP	BAU	CHP	Vehicle	СНР	Vehicle	Vehicle	Vehicle
System C	BAU	CHP	BAU	CHP	СНР	СНР	Vehicle	Vehicle	Vehicle
System D	Vehicle	СНР	BAU/Vehicle	CHP	Vehicle	СНР	Vehicle	Vehicle	Vehicle
System E	Vehicle	СНР	Vehicle	CHP	Vehicle	CHP	Vehicle	Vehicle	Vehicle

L₄: Biogas production system plus substitution effects

L₃: Biogas production system

L₂: Extended biogas plant

L₁: Biogas plant

Anaerobic digestion and gas treatment

 L_{1a}

feedstock pretreatment; hygienization, anaerobic digestion and post digestion; biogas treatment (cleaning, upgrading, liquefaction)

Digestate treatment

 L_{1b}

digestate treatment (sieving, phase separation, advanced treatment)

Transports

L_{2a} transportation of feedstock

L_{2b}

transportation
of digestate
and related
products

L_{2c}

transportation of biogas

Provision and utilization

provision of feedstock (food waste source separation, sorting and collection)

 L_{3b}

rejects and wastewater management

 L_{3c}

utilization of digestate as biofertilizer or other soil products including storage and spreading

 L_{3d}^{\dagger}

utilization of biogas as transport fuel or for heat/power generation

System expansion

¦ L_{4a}

substitution of mineral fertilizers or other products

 L_{4b}

substitution of fossil fuels or energy carriers

(indirect) Life-cycle impacts applicable to all levels

related to provision of energy, raw materials, emissions, etc.

No.	KPI Name	Unit	System level and sub-levels
KPI ₁	Effective methane yield	Nm ³ CH _{4 (delivered)} / t _(food waste at source)	L ₃ excluding L _{3d}
KPI ₂	Climate impact	kg CO ₂ -eq / t _(food waste at source)	L ₄
KPI ₃	Energy balance	MJ (primary energy used) / MJ CH ₄ (delivered)	L ₄ excluding L _{3d} and L _{4d}
KPI ₄	Nitrogen recycling potential	$kg N_{(delivered)} / kg N_{(food waste at source)}$	L ₃ (after spreading on field)
KPI ₅	Phosphorus recycling potential	kg P _(delivered) / kg P _(food waste at source)	L ₃ (after spreading on field)
KPI ₆	Enhancement of plant-available nitrogen	$kg NH_4-N_{(delivered)}/kg NH_4-N_{(food waste at source)}$	L ₃ (after spreading on field)
KPI ₇	Resource cost	Euro / t (food waste at source)	L ₃

Conclusions

➤ Important to define what is included (and not included) in your system studied.

➤ Be transparent about your choices for others to understand your system.

> Results dependent on what is replaced in the systems studied

Thank you!

emma.lindkvist@liu.se

www.liu.se

