Key aspects in energy and environmental analysis of system studies Emma Lindkvist # Biogas production # Biogas system ## Key aspects # Results | | | E | | Environment | | | | | | |-------------|---------|--------|-------------|-------------|---------|------|---------|---------|---------| | Econom | | Energy | | GWP | | AP | | EP | | | | | | Wind | Coal | Wind | Coal | Wind | Coal | Wind | | System
A | Vehicle | СНР | BAU | СНР | Vehicle | СНР | Vehicle | Vehicle | Vehicle | | System
B | Vehicle | CHP | BAU | CHP | Vehicle | СНР | Vehicle | Vehicle | Vehicle | | System
C | BAU | CHP | BAU | CHP | СНР | СНР | Vehicle | Vehicle | Vehicle | | System
D | Vehicle | СНР | BAU/Vehicle | CHP | Vehicle | СНР | Vehicle | Vehicle | Vehicle | | System
E | Vehicle | СНР | Vehicle | CHP | Vehicle | CHP | Vehicle | Vehicle | Vehicle | #### L₄: Biogas production system plus substitution effects #### L₃: Biogas production system #### L₂: Extended biogas plant #### L₁: Biogas plant Anaerobic digestion and gas treatment L_{1a} feedstock pretreatment; hygienization, anaerobic digestion and post digestion; biogas treatment (cleaning, upgrading, liquefaction) #### Digestate treatment L_{1b} digestate treatment (sieving, phase separation, advanced treatment) #### Transports L_{2a} transportation of feedstock L_{2b} transportation of digestate and related products L_{2c} transportation of biogas #### Provision and utilization provision of feedstock (food waste source separation, sorting and collection) L_{3b} rejects and wastewater management L_{3c} utilization of digestate as biofertilizer or other soil products including storage and spreading L_{3d}^{\dagger} utilization of biogas as transport fuel or for heat/power generation #### System expansion ¦ L_{4a} substitution of mineral fertilizers or other products L_{4b} substitution of fossil fuels or energy carriers (indirect) Life-cycle impacts applicable to all levels related to provision of energy, raw materials, emissions, etc. | No. | KPI Name | Unit | System level and sub-levels | |------------------|---|---|--| | KPI ₁ | Effective methane yield | Nm ³ CH _{4 (delivered)} / t _(food waste at source) | L ₃ excluding L _{3d} | | KPI ₂ | Climate impact | kg CO ₂ -eq / t _(food waste at source) | L ₄ | | KPI ₃ | Energy balance | MJ (primary energy used) / MJ CH ₄ (delivered) | L ₄ excluding L _{3d} and L _{4d} | | KPI ₄ | Nitrogen recycling potential | $kg N_{(delivered)} / kg N_{(food waste at source)}$ | L ₃ (after spreading on field) | | KPI ₅ | Phosphorus recycling potential | kg P _(delivered) / kg P _(food waste at source) | L ₃ (after spreading on field) | | KPI ₆ | Enhancement of plant-available nitrogen | $kg NH_4-N_{(delivered)}/kg NH_4-N_{(food waste at source)}$ | L ₃ (after spreading on field) | | KPI ₇ | Resource cost | Euro / t (food waste at source) | L ₃ | ### Conclusions ➤ Important to define what is included (and not included) in your system studied. ➤ Be transparent about your choices for others to understand your system. > Results dependent on what is replaced in the systems studied # Thank you! emma.lindkvist@liu.se www.liu.se